LIFE AS A TECHNICAL ARTIST
By Ali Mayyasi 
Lead Technical Artist
http://www.psionicpixels.com
The Technical Art department is the critical glue between the different game studio departments. It is the keeper of “Memory and Performance”, the defender of “Best Practices”, and the promoter of “Content Organization”. The following commentary briefly describes each of the aforementioned areas. The articles are intended as both general insight into the world of Technical Art, as well as specific reading aimed at fledgling Technical Artists. References are made to the Unreal Engine because of its free availability and open documentation.
MEMORY AND PERFORMANCE
The following section discusses a level’s memory and performance from a Technical Art perspective.

The Level Pipeline:

A level (or map) usually undergoes several phases throughout its lifetime. The following is a simplified overview of the level pipeline: The first phase is the “Block-out” phase, in which placeholder meshes and simplistic lighting are used to establish the space, scope and mood. “Gameplay” then follows, in which pacing, combat and encounters are all set up. “Art Deco” then follows, in which the Artists and Level Designers fully decorate the entire level. Visual Effects (particles, fog, light shafts…) and Sound Effects (music, ambience) also fall into this phase. The “Optimization” phase follows, and heavily involves Technical Artists.

Additional reading:

http://udn.epicgames.com/Three/CreatingLevels.html
Memory:

Developing for consoles is very rewarding, but it is also quite challenging. The PS3 and the Xbox360 have fixed memory: 512 MB. Memory is more restrictive on the PS3 because it is split evenly between System Memory and Video Memory, whereas Xbox360 memory is shared by the CPU and GPU. If a studio is developing a game for both consoles, then the playable area has to fit in 256 MB of system memory at all times. This includes the operating system, the game code, geometry (world, characters, weapons, vehicle…), user interface, sound effects, voice, music, pathing information, shaders, lighting information, animation data, physics data, particles, fragmentation… This is quite the challenge when working on AAA titles that are constantly trying to up the ante. That is why game engines make heavy use of “Streaming”: they unload old data from memory while loading in new data from disk into memory as the game runs. Streaming seamlessly loads in new content while the game progresses, keeping the player feeling immersed. 

Additional reading: 

http://stackoverflow.com/questions/3770457/what-is-memory-fragmentation
http://users.ece.gatech.edu/lanterma/mpg/ece4893_xbox360_vs_ps3_4up.pdf
http://udn.epicgames.com/Three/LevelStreamingHome.html
Asset Budgets: 

Given how memory is limited, it is very easy for the game content to exceed the 256 MB hardware limit and cause “Out Of Memory” crashes. Game engines usually have developer tools to diagnose and track memory data. 
Personal Experience:

	On all of my previous titles, I worked closely with the Engine programmers in order to create memory budgets for all the asset types. Together, we developed a memory tool which tracks and regularly writes out detailed memory information for all the different assets types as a player runs through the game. This allowed us to quickly determine what was over budget. The Technical Art department established Blockout, Gameplay and Deco budgets and was able to verify that levels were at budget at different stages of the pipeline. This prevented the unpleasant situation where Art receives a Block-out map that is already over budget. It also helped catch layout problems early on in the level pipeline, like areas that are too expansive or areas that have very long view lines. Adjusting an area’s layout before it has been decorated is significantly more feasible than after it’s been decorated.


Additional reading:

http://udn.epicgames.com/Three/PerformanceHome.html
http://udn.epicgames.com/Three/MemoryProfilingHome.html
Content Validation and Optimization:

Once an art asset is imported into the game engine, the content developer still has to adjust many settings. Many of those settings can dramatically affect the asset’s impact on performance or memory, in non-obvious ways. For example: enabling dynamic shadow casting on a light has major GPU and CPU implications; setting a weapon fire effect as “looping” can cause a memory leak if the effect is not hooked up correctly in script. 

Personal Experience:

	On a previous project, I identified many of these high-risk content settings, and worked with the Tools programmers to implement a validation tool. The tool would run nightly, review all the art assets, and report anything questionable. This helped us to quickly catch and fix a lot of these content issues, which prevented many stability bugs. It also helped keep Art assets efficient. The more efficient assets are, the more one can use them before using up his/her budget.


Additional reading:

http://udn.epicgames.com/Three/VFXOptimization.html
http://udn.epicgames.com/Three/TextureOptimizationTechniques.html
Content Tools:
Technical Artists are in a great position to detect pipeline inefficiencies and to propose solutions to such inefficiencies. Lighting can have big implications on performance. Dynamic shadow-casting lights are a common performance hog on console CPUs as well as the GPUs; if gone unchecked, they can quickly bring framerates to a crawl. Lighters often copy and paste existing lights to quickly light a large scene. Consequently, it is easy, and common, for a dynamic shadow casting light to get accidentally duplicated all over a map. 
Personal Experience:

	In an attempt to mitigate this issue: I worked with the Tools department to implement a feature where light actor icons clearly determine the lights’ status: static, dynamic, shadow casting... This solved the problem of accidental copy/paste. It also made lighting optimization more straightforward as the shadow casters and dynamic lights were immediately obvious in the scene.


Additional reading:

http://udn.epicgames.com/Three/LightingReference.html
Oversight: 

Sentinel is an Unreal performance and memory tracking tool. Typically, the Quality Assurance department regularly plays through levels with Sentinel tracking enabled. As testers play the game, the Sentinel database gets populated automatically. Some of the key statistics include Game Thread, Draw Thread, GPU Thread, System Memory, and Video Memory. The Technical Artist department maintains oversight of all maps and tracks their progress. It regularly reviews the Sentinel data and creates action items to optimize any levels that are over budget. 

Additional reading:

http://udn.epicgames.com/Three/GameMaintenance.html
RENDERING

Three dimensional game environments need a lot of high quality meshes to look believable, engaging and immersive. The quality of a mesh depends highly on the number of its vertices, the complexity of its shaders, and the quality of its textures. The following section briefly describes the rendering pipeline, as well as some of the performance concerns that usually come up during rendering.
Scene Complexity:

Games need to render at least 30 frames per second to remain believably interactive. This gives a single frame at most 33 milliseconds to get processed by the CPU and rendered by the GPU. Meshes that are off-screen are normally irrelevant, and should not incur any performance overhead. 
Additional reading:

http://en.wikipedia.org/wiki/Frame_rate
http://udn.epicgames.com/Three/PerformanceDebugging.html
Visibility:

Game engines need to be optimized for determining what meshes are visible, so that no processing power is wasted on irrelevant - and potentially complex - meshes. Scene processing is usually handled via an Octree, which is a data structure used to partition three dimensional space. The set of visible meshes is narrowed down using clipping, culling and depth testing. The CPU then has to process all visible meshes in the scene, and submit each one to the GPU for rendering. With thousands of meshes making up a viewed scene, the number of meshes can quickly tax the CPU. 

Additional reading:
http://en.wikipedia.org/wiki/Octree
http://en.wikipedia.org/wiki/Clipping_%28computer_graphics%29
http://en.wikipedia.org/wiki/Z-buffering
Shaders:

A shader is a little program that runs on a GPU, and controls how polygons and pixels are rendered. Once a mesh is submitted to the GPU, each vertex is processed via the vertex shader, to determine its final position in 3D space, and subsequently, screen-space. Each of the mesh's triangles is then rasterized, and each of its pixels is processed via the pixel shader to determine the final color on-screen. 

With thousands of vertices making up a single mesh, the number of vertices can quickly tax the GPU. Similarly, with pixel shaders getting exceedingly more complex, the GPU is further taxed.
The Xbox360 GPU has a unified shading architecture, which means each pipeline is capable of running either pixel or vertex shaders. The PS3 GPU by comparison, has independent pixel/vertex shader architecture, which means that there are dedicated pipes for vertex and shader processing. As a result, vertex processing can be more of a bottleneck on the PS3 when a scene is vertex heavy.
Additional reading:
http://en.wikipedia.org/wiki/Shader



 HYPERLINK "http://en.wikipedia.org/wiki/RSX_%27Reality_Synthesizer%27" 

http://en.wikipedia.org/wiki/RSX_%27Reality_Synthesizer%27

http://en.wikipedia.org/wiki/Xenos_%28graphics_chip%29
CONTENT ORGANIZATION
The following section briefly discusses how game content is organized and processed during development.
Package Size Implications:

Content in Unreal is stored in packages. Package organization has major development and back-end implications, especially package size and package dependency.
Personal Experience:

	In practice, we’ve found that having 30-100 MB packages provide a reasonable workflow balance.


Build Times: 

When doing console development in Unreal, game content has to be “cooked” for the target console before it can run. Cooking is the process where packages are reformated and optimized to run on the console’s specific hardware. When a package is cooked, all the packages which that package depends on also get cooked. The more scattered a package’s dependencies are, the more packages are needed to get cooked, and consequently, the longer the cooking takes. Longer “cook times” imply longer “build times”. 
The “build” is a snapshot of the game at any point in development. When a build is requested, the entire game’s latest code and content are compiled, cooked then deployed to the team so that they can work with the latest features, content and tools available. Build turnaround time is quintessential for iteration, deployment, and stabilization. Major bugs often get introduced, which prevent developers from testing or running the game. When such a work-stopping bug is fixed, a new build is immediately requested so that the team can resume normal development.
Additional reading:

http://udn.epicgames.com/Three/ContentCooking.html
http://udn.epicgames.com/Three/ContentHome.html
http://udn.epicgames.com/Three/UnrealPackages.html
http://udn.epicgames.com/Three/ContentBrowserReference.html
Source Control Server Space: 

Every time a package is edited, a new revision of that package is saved on the source control server. Large packages incur wasted server disk space when relatively small edits are made. For example, if there is a 300 MB package containing 30 meshes, and a small edit is made to one mesh, a full new 300 MB revision of that package gets added, most of which is redundant and thus wasted. 
Additional reading:

http://udn.epicgames.com/Three/SCCIntegration.html
Source Control Bandwidth:

Source control bandwidth dramatically affects internal and external sync times. Internally, Ethernet download speeds can reach 100 Mbps. Externally, download speeds can reach 6 to 15 Mbps for cable modems. When developers sync to source control, they get the latest copies of all the project's files. Internally, content developers typically sync to source control multiple times a day. Long sync-times hurt momentum and slow down production. When an edit is made to a 300 MB package, then all content developers in the studio will sync down that 300 MB over the network. 
Concurrency: 

Concurrency is another important factor to consider when it comes to package organization and size. In Unreal, packages can only be edited by one person at a time. The more assets are in a package, the greater the potential of two people needing to edit it at the same time. 
Regression Testing:

Near the end of the project, all content packages get locked to prevent new edits. This content lock allows Programmers and Technical Artist to work on stabilizing and optimizing the game. Quality Assurance testers have to regression-test all edits to ensure that no new bugs are introduced. The wider the package dependency of edited, the longer it takes the testers to verify a single edit. 

Additional reading:

http://en.wikipedia.org/wiki/Regression_testing
CONCLUSIONS

Life as a Technical Artist may be challenging, but it is also very satisfying. Supporting and empowering fellow teammates in the game-creation process is a very worthwhile experience. Regularly working with different departments, routinely facing new challenges, and helping content developers make the most out of their tools is very rewarding. 

BIO

[image: image1.png]



I’m Ali Mayyasi, and I’m from Lebanon. Growing up with limited access to video games, I was blown away when I first saw Donkey Kong Country on the SNES. I knew then that 3D was my calling. I graduated with a Computer Science bachelor’s in Beirut, and moved to California. I landed my first job as a Tools programmer at the Jim Henson Company in Hollywood. By working closely with the content developers there, I found myself increasingly passionate about 3D production. I decided to formally pursue this fascination and eagerly signed up at the Vancouver Film School. By experiencing the full breadth and depth of the pipeline, I knew without a doubt that I wanted to become a technical artist. After graduating, I was hired by TimeGate as their first Technical Artist. I helped with communication, workflow, planning, prototyping, scripting, shaders and VFX. I have since become the Lead Tech Artist. It has been a remarkable journey, and I look forward to the fun problem solving to come. Check out my work at www.psionicpixels.com
