MATERIAL GUIDELINES IN UNREAL ENGINE 3
By Ali Mayyasi

Lead Technical Artist

http://www.psionicpixels.com
This article talks about Material guidelines. It assumes that the reader has an intermediate understanding of Material creation and usage in Unreal Engine 3.
THE CHALLENGE
Unreal editor has a very powerful Material creation tool. It greatly empowers content developers to push the visual bar and not have to rely on Graphics programmers. However, without some guidelines, oversight and management, materials can quickly become a performance and organization problem.
OVERSIGHT

In our experience, having a small centralized set of managed configurable materials has been much better to deal with than having a large unmanaged decentralized set of custom materials. Having TechArt oversee and maintain the material library has been quite valuable. Here are some of the benefits:

DEVELOPMENT TIME/REDUNDANCY (major benefit)

· Historically, multiple devs end up sinking non-trivial amounts of time recreating material functionality that already exists elsewhere, unknown to them.

· Having a centralized and documented library greatly mitigates this issue.

MAINTENANCE (major benefit)

· Having a centralized set of materials allows for quickly extending functionality as needed.

· Additions to one parent material will propagate to all material instances, and their referencers

· Ex: Adding lit particle support to all particle materials

· Ex: Adding fadeout support to all decal materials

· Ex: Adding skin tinting support to all characters

· Ex: Adding detail normal tiling support to all phong masked materials

· Edit Propagation Protection:

· It comes up quite often that values in a material need to be updated (texture, vector, scalar). It is very undesirable to have these changes propagate to all referencers.

· Having material instances with overridden params will protect all referencers from inheriting such changes.

· TechArt oversees param naming for automated validation

· Having consistently named parameters allows for automated validation. We have tools that run on all material instances and check for questionable values

· Ex: if a Cubemap multiplier is below a minimum threshold, then the cubemap contribution is too little to justify the GPU cost of the cubemap. As a result, the cubemap should be disabled via static switch

· The automated tool assume params are named in a certain way, so it's important to enforce consistent parameter naming

· TechArt oversees GPU efficiency:

· It is very common for artists to have "corrective" shader-side math that can trivially be applied to the source texture for free. Ex: Multiply, Power, Clamp...

· It is very common for artists to have multiple textures, each having a single channel being sampled; it is better to have sampled channels packed into a single texture

· Common node misuse. Ex: Normal maps being used with TextureParam2D instead of TextureParamNormalMap.

· GPU efficiency is very important especially for VFX shaders, that involve a lot of overdraw.

QUALITY/STABILITY (major benefit)

· Having a core set of approved materials keeps the quality of those materials consistent

· TechArt watches over script/code driven params

· Ex: if a dev adds a new decal material but is not aware of an obscure in-house decal fading node, we will end up with bugs

· Usage Flags:

· Usage flags are quite commonly missed resulting in bugs, build/runtime spam.

· Accidentally using a material incorrectly in-editor will auto-set usage flags on the material, which may get accidentally saved, increasing shader permutations/memory.

· Ex: drag/dropping to apply a mat override but instead adding a decal)

· Blendmode/Lighting Model compatibility:

· Sometimes not set correctly

· TechArt oversees param naming for consistency, for easy readability by multiple departments. Commonly overloaded param:
· "SpecularColor", "SpecTint", "SpecMultiplier", "Color_Spec"…

· "CubeMapStaticSwitch", "CubeOnOff", "bCubeMap"…
MEMORY

· Having custom materials will come at a memory cost

· Each material created results in several shaders auto-generated by the engine, based on material usage flags, static switches...

· If instead of having 1 material with 1 texture param you had N equivalent materials, each with a hardcoded textures, the result will be N more shaders. Wasteful.

· More shaders mean more "shader cache" memory; more data to load when sublevels stream... Every megabyte counts on the PS3, so we try to keep this number as low as possible.

PERFORMANCE

· Similar materials will result in redundant shaders. Switching between redundant shaders while rendering incurs unnecessary performance overhead.

BACKEND

· More shaders means longer shader compilation times, which means longer build turnaround times. Specifically, Xbox360 takes significantly longer than PC/PS3 because it has a better shader compiler that produces better shader code.

PROTOTYPING
We encourage devs to prototype their own materials, however, TechArt follows up by:

· Determining if the material can be easily consolidated with an existing one

· Optimizing or merging

· Confirming correct usage flags, blend modes, lighting model...

· Cleaning up param names to conform to
· Checking for proper material name and location

· Updating documentation
RESOURCES

http://udn.epicgames.com/Three/MaterialsAndTexturesHome.html
http://udn.epicgames.com/Three/MaterialsCompendium.html
http://udn.epicgames.com/Three/InstancedMaterials.html
1

